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Study Objectives: To develop and validate a practical model for obstructive sleep apnea (OSA) screening in adults based on objectively assessed criteria, 
and then compare it with two widely used tools, namely STOP-BANG and NoSAS.
Methods: This is a retrospective study of an existing database of consecutive outpatients who were referred for polysomnography for suspected sleep-
disordered breathing by their primary care physicians. Area under the curve (AUC) and 2 × 2 contingency tables were employed to obtain the performance of 
the new instrument.
Results: A total of 4,072 subjects were randomly allocated into two independent cohorts: one for derivation (n = 2,037) and one for validation (n = 2,035). 
A mnemonic model, named No-Apnea, with two variables (neck circumference and age) was developed (total score: 0–9 points). We used the cutoff ≥ 3 to 
classify patients at high risk of having OSA. OSA severity was categorized by apnea-hypopnea index (AHI): any OSA (AHI 5 ≥ events/h; OSA-5), moderate/
severe OSA (AHI 15 ≥ events/h; OSA-15); and severe OSA (AHI 30 ≥ events/h; OSA-30). In the derivation cohort, the AUCs for screening of OSA-5, OSA-15, 
and OSA-30 were: 0.784, 0.758, and 0.754; respectively. The rate of subjects correctly screened was 78.1%, 68.8%, and 54.4%, respectively for OSA-5, 
OSA-15, and OSA-30. Subsequently, the model was validated confirming its reproducibility. In both cohorts, No-Apnea discrimination was similar to STOP-
BANG or NoSAS.
Conclusions: The No-Apnea, a 2-item model, appears to be a useful and practical tool for OSA screening, mainly when limited resources constrain 
referral evaluation. Despite its simplicity when compared to previously validated tools (STOP-BANG and NoSAS), the instrument exhibits similar 
performance characteristics.
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INTRODUCTION

Obstructive sleep apnea (OSA) is characterized by frequent 
partial or complete collapse of the upper airway during sleep, 
resulting in periodic hypoxemia, increased respiratory effort, 
and arousals.1 There is growing evidence of OSA playing a role 
in the pathogenesis of cardiovascular and metabolic diseases1 

and also a strong association with increased mortality rates.2 

Recent studies3–5 indicate a clear increase in the prevalence of 
OSA: a Brazilian study showed that OSA was diagnosed in 
32.8% of the participants3; two other studies have also shown 
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similar findings, with a prevalence of moderate to severe OSA 
of 13% being recorded among men and of 6% among women4 

and of 49.7% in men and 23.4% in women.5 Aging populations6 
and the strong association between body mass index (BMI) 
and OSA7 may account for such increases in OSA prevalence. 
Indeed, obesity has been linked with increases in neck circum-
ference (NC), which can reduce the upper airway diameter and 
alter the mechanical properties of the upper airway altogether.8,9

The gold standard for OSA diagnosis consists of full poly-
somnography (PSG); however, it is not readily available for 
the large number of patients with suspected OSA, such that 

BRIEF SUMMARY
Current Knowledge/Study Rationale: There are several clinical questionnaires for screening of obstructive sleep apnea (OSA), aiming to find the 
patients at high risk for this disease, which is often undiagnosed. These questionnaires often use subjective data related to sleep, which often requires 
bed partner information, reducing their practical applicability.
Study Impact: The No-Apnea, a practical model with only two variables (neck circumference and age) may be useful to identify patients at high risk 
for OSA, indicating home sleep studies and reducing long waiting lines found in several sleep laboratories, especially in primary care settings and 
when limited resources constrain referral evaluation. When compared to STOP-BANG (an 8-item model) and NoSAS (a 5-item model), the No-Apnea 
(a 2-item model) had similar performance characteristics.
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a screening tool could be useful to stratify patients at risk 
for OSA, and enable improved access to PSG testing and di-
agnosis.10 Several OSA screening questionnaires have been 
described,11–16 among which the Berlin and STOP-BANG 
instruments are most frequently cited. The Berlin question-
naire12 includes items that access the presence and frequency 
of snoring, sleepiness or fatigue, and history of obesity or 
hypertension. The STOP questionnaire (snoring, tiredness, 
observed apnea, and hypertension), and the STOP-BANG 
questionnaire (STOP plus BMI, age, NC, and gender) were 
first developed and validated in surgical patients.13 Both ques-
tionnaires are self-administered consisting of 4 or 8 yes-or-
no questions, respectively. For OSA diagnosis in a sample of 
surgical patients, the STOP-BANG questionnaire showed the 
following parameters: sensitivity 83.6%, specificity 56.4%, 
positive predictive value (PPV) 81.0%, and negative predic-
tive value (NPV) 60.8%.13

Despite the extensive efforts to develop highly performing 
questionnaires, objectively based scoring tools for screening 
of OSA have rarely been evaluated. Indeed, the existing OSA 
screening models rely on subjective information, such as snor-
ing, observed apnea, and choking/gasping, usually provided by 
the bed partner, and therefore not always available. To overcome 
such constraints in the screening of OSA, our study comprised 
two parts: (1) development and validation of a very practical 
screening model and (2) comparison with STOP-BANG ques-
tionnaire13 and the recently reported NoSAS score.16

METHODS

Study Design and Patient Selection
This is a cross-sectional retrospective study of an existing da-
tabase from January 2015 to December 2016 of consecutive 
outpatients who were referred for PSG evaluation for sus-
pected sleep-disordered breathing (SDB) by their primary care 
physicians. If the same patient underwent more than one test, 
only the test that had the highest total sleep time was retained. 
All subjects were grouped into two different and independent 
samples, using a randomization process as prescribed by the 
SPSS statistical package (version 17.0; SPSS; Chicago, Illi-
nois, United States), in which all patients enrolled in the study 
were divided equally into two cohorts (50% of the patients 
were allocated to the derivation cohort and the remaining 50% 
were allocated to the validation cohort). Our study protocol 
(#666.608) was approved by the Institutional Review Board of 
Federal University of Rio de Janeiro and waived the patient 
consent requirement.

For both groups, inclusion criteria consisted of age 18 years 
or older and suspected OSA, whereas they were excluded for 
any of the following reasons: previously diagnosed OSA, use 
of portable or split-night studies, incomplete clinical data, 
and technically inadequate PSG. On the evening of the PSG, 
clinical data were collected in all patients: sex, age, BMI, NC, 
self-reported comorbidities (hypertension, diabetes mellitus, 
and smoking), and Epworth Sleepiness Scale (ESS),17 which 
is a well-validated 8-item questionnaire that measures subjec-
tive sleepiness, with a score of 10 points or higher considered 

indicative of excessive daytime sleepiness. Patients were mea-
sured for weight and height, and the BMI was calculated by 
dividing the weight in kilograms by the square of the height in 
meters (kg/m2). The NC was systematically measured, using 
a tape measure, in centimeters, as follows: all subjects were 
asked to stand erect with their head positioned in the Frankfort 
horizontal plane. The superior border of a tape measure was 
placed just below the laryngeal prominence and applied per-
pendicular to the long axis of the neck.18

Aiming to compare with other validated models, data from 
the STOP-BANG questionnaire13 and NoSAS score16 were also 
collected by trained sleep technicians. The STOP-BANG13 

consists of 8 yes-or-no questions: loud snoring, tiredness, ob-
served apnea, hypertension, BMI > 35 kg/m2, age older than 
50 years, NC > 40 cm, and male sex. A score of 3 or higher 
is considered as high risk for presence of OSA. The NoSAS 
score16 allocates 4 points for having a NC > 40 cm, 3 points for 
having a BMI of 25 kg/m2 to less than 30 kg/m2 or 5 points for 
having a BMI ≥ 30 kg/m2, 2 points for snoring, 4 points for age 
older than 55 years, and 2 points for being male. Using NoSAS, 
a cutoff of ≥ 8 points identifies subjects at risk of clinically 
significant SDB.16

Sleep Studies
All Brazilian studies were conducted in a single sleep center 
with two different units: one in Niteroi City and one in Rio 
de Janeiro City. All patients underwent an attended, in-labora-
tory PSG (EMBLA S7000, Embla Systems, Inc., Broomfield, 
Colorado, United States), consisting of continuous monitoring 
of electroencephalography, electrooculography, electromy-
ography (chin and legs), electrocardiography, airflow (nasal 
pressure), thoracic and abdominal impedance belts, oxygen 
saturation (SpO2), microphone for snoring, and sensors for 
body position. PSG records were scored manually and were 
interpreted in a blinded way by two board-certified sleep phy-
sicians in accordance with existing guidelines.19 Apneas were 
classified with a drop ≥ 90% of baseline in airflow lasting at 
least 10 seconds, whereas hypopneas were classified as fol-
lows: a drop ≥ 30% of preevent during ≥ 10 seconds associ-
ated with ≥ 3% oxygen desaturation or an arousal.19 Diagnosis 
of OSA was based on an apnea-hypopnea index (AHI) ≥ 5 
events/h and its severity was classified as follows: ≥ 5 events/h 
as any OSA (OSA-5), ≥ 15 events/h as moderate/severe OSA 
(OSA-15), and ≥ 30 events/h as severe OSA (OSA-30).

Modeling
We aimed to elaborate a very practical model that contains 
only continuous and numerical variables, and as such three 
parameters, previously recognized as predictors of OSA, were 
chosen for analysis: NC, age, and BMI. First, these variables 
were evaluated through linear regression in order to verify 
the occurrence or not of multicollinearity. Multicollinearity 
is a linear association between two or more explanatory vari-
ables being detected by tolerance and variance inflation factor 
(VIF).20 The VIF is simply the reciprocal of the tolerance level 
(1/tolerance), being that the VIFs measure the inflation in the 
variances of the parameter estimates due to collinearities that 
exist among the predictors.20
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After excluding multicollinearity, these three parameters 
were evaluated in their continuous form, through binary lo-
gistic regression at three different AHI thresholds (5, 15, and 
30 events/h), with comparisons being conducted through the 
regression coefficient (β). To further simplify the model, the 
two main parameters were retained. For the elaboration of the 
scoring system, these two parameters were grouped based on 
three cutoff points obtained by median (50% percentile) and 
interquartile range (IQR: 25% and 75% percentiles) and then 
evaluated with binary logistic regression. Assignment of points 
to parameters was calculated as follows: the β coefficient of 
each variable was divided by the lowest β-coefficient value and 
rounded to the nearest whole integer. Subsequently, all points 
accrued were summed to create the scoring index.

Statistical Analysis
Data analysis was conducted using SPSS for Windows (ver-
sion 17.0; SPSS; Chicago, Illinois, United States). Results are 
shown as median and IQR for continuous variables and as fre-
quency with percentage for categorical variables. Groups were 
compared using the chi-square test for categorical variables, 
whereas all numeric variables were evaluated with the non-
parametric Mann-Whitney U test. Correlation was evaluated 
by Spearman correlation coefficient (rs). Through linear regres-
sion, absence of multicollinearity was assumed if VIF < 5.0. 
Parameters predictive of OSA (age, NC, and BMI) were en-
tered into a logistic regression analysis in parallel, with the 
Wald test being used to explore if explanatory variables in a 
model were significant. A scoring system was derived using 
weightings from β-regression coefficients.

To examine the apparent performance (internal validity) of 
our developed model, discrimination, calibration, and over-
all performance were calculated in both cohorts evaluated. 
Discrimination, the ability of a scoring system to distinguish 
between patients with and without different outcomes, was 
estimated from the area under the curve (AUC).21 The AUC 
may theoretically range from 0.5 (discrimination equivalent 
to that of chance) to 1.0 (perfect discrimination).21 Calibra-
tion refers to the agreement between observed outcomes and 
predictions; being that it was assessed by Hosmer-Lemeshow 
chi-square test (P < .05 indicates poor calibration).21 Over-
all performance (how well the model predicts the likelihood 
of an outcome in an individual patient) was assessed us-
ing the Nagelkerke R2, which ranges from 0 to 1.21 As the 
Hosmer-Lemeshow chi-square test is sensitive to sample 
size, we chose smaller subsets of randomly selected patients 
(n = 1,000) to evaluate the model calibration in both cohorts 
evaluated. After completion of the model development, the 
cutoff point determined to identify patients at risk for SDB 
was chosen to achieve a high sensitivity, while preserving a 
moderate specificity. Using the 2 × 2 contingency tables, the 
following parameters were calculated: sensitivity, specificity, 
PPV, NPV, accuracy, likelihood ratios, and odds ratio (OR) 
with their respective 95% confidence interval (CI). The re-
ceiver operating characteristic (ROC) curves and AUC were 
assessed at three AHI thresholds (5, 15, and 30 events/h). 
The AUCs obtained by all screening models were compared 
using prior algorithm.22 Posttest probability of each score 

was calculated by logistic regression. A two-tailed value of 
P < .05 was considered statistically significant.

RESULTS

Of a total of 4,476 subjects referred for diagnostic PSG, 404 
patients (9.0%) were subsequently excluded based on exclusion 
criteria. The exclusions consisted of 260 with incomplete clini-
cal data, 76 tested with portable or split-night studies, 54 with 
technically inadequate PSG, and 14 with a previous diagnosis 
of OSA. Thus, 4,072 subjects were randomly allocated into two 
independent cohorts: one for derivation (n = 2,037) and one for 
validation (n = 2,035). Based on Table 1, no clinical or PSG 
parameter was statistically different. Within the derivation co-
hort, median age was 45.0 years (IQR: 35.0–55.0) and 55.9% 
were male, whereas in the derivation cohort, median age was 
44.0 years (IQR: 34.0–55.0) and 53.2% were male. Similarly, 
the prevalence of OSA-5, OSA-15, and OSA-30 was not statis-
tically different between the derivation cohort and validation 
cohort (77.9% versus 76.4%, 55.2% versus 54.7%, and 34.5% 
and 35.8%; respectively). In the derivation cohort, prevalence of 
OSA-5, OSA-15, and OSA-30 was higher in men than women: 
86.9% versus 66.5%, 67.6% versus 39.5%, and 46.7% versus 
19.0%; respectively; all with P < .001. Similarly, in the validation 
cohort, prevalence of OSA-5, OSA-15, and OSA-30 were also 
higher in men than women: 87.2% versus 64.1%, 69.3% versus 
38.1%, and 48.9% versus 20.8%; respectively; all with P < .001, 
suggesting sex influences leading to higher prevalence of severe 
forms of OSA. Men had a higher median NC than women in 
the derivation cohort (42.0 cm [IQR: 40.0–46.0] versus 38.0 cm 
[IQR: 35.0–40.0]), and in the validation cohort (43.0 cm [IQR: 
40.0–46.0] versus 38.0 cm [IQR: 35.0–40.0]), both with P < .001. 
Men had a lower median age than women in the derivation co-
hort (42.0 years [IQR: 33.0–53.0] versus 47.0 years [IQR: 35.0–
56.0]) and in the validation cohort (41.0 years [IQR: 33.0–53.0] 
versus 47.0 years [IQR: 36.0–58.0]); both with P < .001.

The No-Apnea Development
After excluding multicollinearity among the three parameters 
of interest (NC with VIF = 1.484, age with VIF = 1.016, and 
BMI with VIF = 1.503), these variables were evaluated through 
binary logistic regression (Table 2). As can be seen in Table 2, 
for all AHI thresholds (5, 15 or 30 events/h), when comparing 
the three clinical parameters in their continuous form, we found 
that the magnitude of the regression coefficient was always 
higher for NC, followed by age and BMI. Moreover, BMI did 
not emerge as an independent variable for screening of OSA-5 
with OR: 1.014 (95% CI: 0.996–1.033; P = .119). Therefore, BMI 
was then excluded from the model for three reasons: (1) in the 
binary logistic regression, it was the third-ranked parameter for 
all AHI thresholds; (2) it did not emerge as an independent pa-
rameter for screening of OSA-5; and (3) reducing the model to 
two variables obviously further simplified the tool.

Table 3 shows the binary logistic regression with the two 
parameters chosen (NC and age) categorized from the 25%, 
50% and 75% percentiles: (1) for NC: 37 cm, 40 cm, and 43 cm; 
and (2) for age: 35 years, 45 years, and 55 years; respectively. 
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Table 1—General and sleep characteristics for both cohorts.
Parameter Derivation Cohort (n = 2,037) Validation Cohort (n = 2,035) P

Clinical data
Male, n (%) 1,138 (55.9) 1,083 (53.2) .095
Caucasian, n (%) 1,636 (80.3) 1,645 (80.8) .864
Age, years 45.0 (35.0–55.0) 44.0 (34.0–55.0) .975
BMI, kg/m2 32.2 (26.7–38.8) 32.5 (26.7–38.9) .552
NC, cm 40.0 (37.0–43.0) 40.0 (37.0–44.0) .660
ESS score ≥ 10, n (%) 1,017 (50.0) 1,063 (52.3) .167
Current smokers, n (%) 202 (9.9) 202 (9.9)  > .999
Hypertension, n (%) 819 (40.2) 790 (38.8) .370
Diabetes mellitus, n (%) 224 (11.0) 250 (12.3) .204

PSG data 
Total sleep time, min 352.1 (310.4–393.0) 358.5 (307.8–395.5) .064
Sleep efficiency, % 82.2 (71.7–90.5) 83.0 (71.4–90.6) .198
Sleep latency, min 22.4 (9.0–48.3) 22.4 (9.8–47.0) .950
REM latency, min 126.0 (86.5–188.2) 125.5 (85.2–187.0) .847
Stage N1, % 3.0 (1.0–7.0) 3.0 (1.0–7.0) .863
Stage N2, % 65.5 (58.0–74.0) 65.0 (57.1–74.1) .354
Stage N3, % 12.2 (4.2–18.8) 12.0 (4.7–18.5) .730
Stage R, % 16.5 (11.2–21.5) 16.8 (11.2–22.0) .315
Arousal index, events/h 21.5 (11.4–42.4) 20.8 (10.6–42.3) .442
AHI, events/h 16.9 (6.2–41.3) 17.3 (5.5–40.8) .531
Awake SpO2, % 95.8 (94.5–96.9) 95.8 (94.5–97.0) .488
Mean SpO2, % 94.2 (92.0–95.9) 94.3 (92.0–95.9) .864
Nadir SpO2, % 84.0 (77.0–89.0) 84.0 (77.0–89.0) .222
AHI, events/h

≥ 5, n (%) 1,587 (77.9) 1,554 (76.4) .247
≥ 15, n (%) 1,124 (55.2) 1,114 (54.7) .801
≥ 30, n (%) 702 (34.5) 728 (35.8) .393

Data are presented as median (interquartile range) or n (%). AHI = apnea-hypopnea index, BMI = body-mass index, ESS = Epworth sleepiness scale, 
NC = neck circumference, PSG = polysomnography, REM = rapid eye movement, SpO2 = oxygen saturation.

Table 2—Binary logistic regression of the continuous predictors evaluated according to AHI thresholds (derivation cohort: 
n = 2,037).

β SE Wald df P OR (95% CI)
AHI ≥ 5 events/h

NC, cm 0.235 0.018 174.078 1  < .001 1.265 (1.222–1.311)
Age, years 0.047 0.005 100.267 1  < .001 1.048 (1.039–1.058)
BMI, kg/m2 0.014 0.009 2.436 1 .119 1.014 (0.996–1.033)

AHI ≥ 15 events/h
NC, cm 0.204 0.015 196.975 1  < .001 1.226 (1.191–1.261)
Age, years 0.033 0.004 74.138 1  < .001 1.033 (1.026–1.041)
BMI, kg/m2 0.024 0.008 10.227 1 .001 1.025 (1.010–1.040)

AHI ≥ 30 events/h
NC, cm 0.215 0.015 207.453 1  < .001 1.240 (1.204–1.277)
Age, years 0.025 0.004 39.967 1  < .001 1.025 (1.017–1.033)
BMI, kg/m2 0.021 0.008 6.746 1 .009 1.021 (1.005–1.037)

The P value was obtained from the Wald test. All parameters were entered into logistic regression in parallel. AHI = apnea-hypopnea index, β = regression 
coefficient, BMI = body mass index, CI = confidence interval, df = degrees of freedom for the Wald test, NC = neck circumference, OR = odds ratio, 
SE = standard error.
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Then, each variable was grouped and scored, according to 
β-coefficient, as follows: the NC (in cm) was scored in three 
different values: 1 (37.0–39.9), 3 (40.0–42.9), and 6 (≥ 43.0), 
whereas the age (in years) was scored in three different val-
ues: 1 (35–44), 2 (45–54), and 3 (≥ 55). The points for each 
variable were added, totaling a final score of 0–9 points and 
this mnemonic tool was termed “No-Apnea” (Table 4). The 
most frequent No-Apnea score was 3 points (n = 352), followed 
by 6 points (n = 314) and 4 points (n = 263). Corresponding 
to the increase in No-Apnea scores (from 0 to 9 points), there 
was a linear increase in the prevalence of OSA-5 (from 33.0% 
to 95.6%), OSA-15 (from 13.6% to 85.3%), and OSA-30 (from 
3.9% to 68.4%); all with P < .001.

The No-Apnea Performance
In the derivation cohort, for screening of OSA-5 (the AHI 
threshold chosen to score the No-Apnea parameters), the devel-
oped model showed the following characteristics: (1) discrim-
inatory power based on ROC curves with AUC: 0.784 (95% 
CI: 0.761–0.808); (2) calibration with Hosmer-Lemeshow chi-
square test: 10.270 (P = .247); and (3) overall performance with 
Nagelkerke R2: 0.265. Moreover, for screening of OSA-15 and 
OSA-30, the No-Apnea showed the following characteristics: (1) 
discriminatory power with AUCs: 0.758 (95% CI: 0.737–0.779) 
and 0.754 (95% CI: 0.733–0.776), respectively; (2) calibration 
with Hosmer-Lemeshow chi-square test: 11.591 (P = .170) and 
10.046 (P = .262), respectively; and (3) overall performance 
with Nagelkerke R2: 0.259 and 0.248, respectively.

In the validation cohort, for screening of OSA-5, OSA-15, 
and OSA-30, the No-Apnea showed the following character-
istics: (1) discriminatory power with AUCs: 0.781 (95% CI: 
0.757–0.805), 0.752 (95% CI: 0.731–0.773), and 0.752 (95% CI: 
0.730–0.773), respectively; (2) calibration with Hosmer-Leme-
show chi-square test: 10.976 (P = .203), 13.647 (P = .091), and 
5.498 (P = .703), respectively; and (3) overall performance with 
Nagelkerke R2: 0.259, 0.243, and 0.234, respectively.

The No-Apnea Predictive Parameters (Derivation Cohort)
Predictive performance of the No-Apnea is shown in Table 5 
(derivation cohort; n = 2,037). We used a cutoff of ≥ 3 to classify 

patients at high risk (75.9%) versus at low risk (24.1%) of hav-
ing OSA-5, OSA-15, and OSA-30. The accuracies obtained 
were of 78.1%, 68.8%, and 54.4%, respectively for OSA-5, 
OSA-15, and OSA-30. Using a cutoff of ≥ 3, the posttest prob-
abilities for OSA-5, OSA-15, and OSA-30 were 86.8%, 65.8%, 
and 42.6%, respectively. In addition, the posttest probabilities 
for OSA-5, OSA-15, and OSA-30 increased proportionally with 
the increase in the No-Apnea scores (from 0 to 9 points; data 
not shown).

Table 6 was created aiming to compare our model with two 
previously reported screening tools: STOP-BANG and NoSAS. 
For screening of OSA-5, OSA-15, and OSA-30, No-Apnea model 
showed the following parameters: sensitivity ranged from 84.7% 
to 94.0%, specificity ranged from 54.9% to 33.6%, whereas the 
accuracy ranged from 78.1% to 54.4%, respectively. For OSA-5 
diagnosis, STOP-BANG showed the higher sensitivity (88.8%), 
whereas the higher specificity was obtained with NoSAS 
(68.7%). For OSA-15 diagnosis, NoSAS showed the higher spec-
ificity (57.6%), whereas the higher sensitivity was obtained with 
STOP-BANG (92.5%). For OSA-30 diagnosis, NoSAS showed 
the higher specificity (49.2%), whereas the higher sensitivity 
was obtained with STOP-BANG (95.7%). Based on AUCs, No-
Apnea discrimination did not show statistically significant dif-
ferences compared to the STOP-BANG for screening of OSA-5 

Table 3—Binary logistic regression of the categorized predictors according to AHI ≥ 5 events/h (derivation cohort: n = 2,037).
β Points* SE Wald df P OR (95% CI)

Neck circumference, cm
< 37.0 – 0 – 221.440 3  < .001 –
37.0–39.9 0.732 + 1 0.153 22.941 1  < .001 2.080 (1.541–2.807)
40.0–42.9 1.422 + 3 0.157 82.538 1  < .001 4.145 (3.050–5.633)
≥ 43.0 3.028 + 6 0.215 198.101 1  < .001 20.660 (13.552–31.497) 

Age, years
< 35 – 0 – 100.516 3  < .001 –
35–44 0.492 + 1 0.154 10.209 1 .001 1.636 (1.210–2.213)
45–54 0.981 + 2 0.163 36.120 1  < .001 2.668 (1.937–3.675)
≥ 55 1.681 + 3 0.175 91.951 1  < .001 5.369 (3.808–7.569)

The P value was obtained from the Wald test. * = points assigned to No-Apnea from the regression coefficient. AHI = apnea-hypopnea index, β = regression 
coefficient, CI = confidence interval, df = degrees of freedom for the Wald test, OR = odds ratio, SE = standard error.

Table 4—No-Apnea scoring system.
Parameter Points

Neck circumference, cm
< 37.0 0
37.0–39.9 + 1
40.0–42.9 + 3
≥ 43.0 + 6

Age, years
< 35 0
35–44 + 1
45–54 + 2
≥ 55 + 3

The points for each variable are added, totaling a final score of 0–9 
points.



1102Journal of Clinical Sleep Medicine, Vol. 14, No. 7 July 15, 2018

RL Duarte, MF Rabahi, FJ Magalhães-da-Silveira, et al. A 2-Item Model for the Screening of OSA

(P = .645), OSA-15 (P = .946), and OSA-30 (P = .589). Similarly, 
No-Apnea discrimination did not significantly differ from that 
of NoSAS for screening of OSA-5 (P = .555), OSA-15 (P = .946), 
and OSA-30 (P = .858). Furthermore, STOP-BANG discrimina-
tion was similar to NoSAS for diagnosis of OSA-5, OSA-15, and 
OSA-30: P = .896, P = .892, and P = .473; respectively. All mod-
els tested (No-Apnea, STOP-BANG, and NoSAS) were corre-
lated with AHI (rs = 0.530, rs = 0.545, and rs = 0.529; respectively; 
all with P < .001). In addition, ESS has not proved useful as 
a screening tool for OSA-5, OSA-15, and OSA-30: AUC: 0.573 
(95% CI: 0.543–0.603), AUC: 0.559 (95% CI: 0.534–0.584), and 
AUC: 0.591 (95% CI: 0.565–0.617); respectively.

The No-Apnea Predictive Parameters (Validation Cohort)
Based on AUCs summarized in the Table 7 (validation cohort; 
n = 2,035), No-Apnea discrimination did not show statistically 

significant differences compared to the STOP-BANG for 
screening of OSA-5 (P = .232), OSA-15 (P = .087), and OSA-
30 (P = .074). Similarly, No-Apnea discrimination did not sig-
nificantly differ from that of NoSAS for screening of OSA-5 

(P = .957), OSA-15 (P = .788), and OSA-30 (P > .999). In ad-
dition, STOP-BANG discrimination was similar to NoSAS for 
diagnosis of OSA-5, OSA-15, and OSA-30: P = .212, P = .085, 
and P = .074; respectively. For screening of OSA-5, OSA-15, 
and of OSA-30, No-Apnea model showed the following pa-
rameters: sensitivity ranged from 83.1% to 91.5%, specificity 
ranged from 58.2% to 36.8%, whereas the accuracy ranged 
from 77.2% to 56.4%, respectively. All models tested (No-
Apnea, STOP-BANG, and NoSAS) were correlated with AHI 
(rs = 0.528, rs = 0.584, and rs = 0.534; respectively; all with 
P < .001). All AUCs obtained by the three models are shown 
in Figure 1.

Table 5—Predictive parameters of No-Apnea (derivation cohort: n = 2,037).
No-Apnea Scores

 ≥ 2 versus < 2  ≥ 3 versus < 3  ≥ 4 versus < 4
AHI ≥ 5 events/h 

Sensitivity 92.1 (91.2–93.1) 84.7 (83.6–85.8) 68.1 (67.0–69.1)
Specificity 38.2 (34.8–41.5) 54.9 (51.0–58.6) 74.7 (70.8–78.2)
PPV 84.0 (83.1–84.9) 86.9 (85.8–88.0) 90.5 (89.0–91.8)
NPV 57.9 (52.8–62.9) 50.4 (46.9–53.9) 39.9 (37.8–41.8)
Accuracy 80.2 (78.7–81.7) 78.1 (76.4–79.8) 69.6 (67.9–71.1)
LR + 1.49 (1.39–1.59) 1.87 (1.70–2.07) 2.68 (2.29–3.17)
LR − 0.20 (0.16–0.25) 0.27 (0.24–0.32) 0.42 (0.39–0.46)
Odds ratio 7.23 (5.51–9.50) 6.73 (5.30–8.53) 6.29 (4.93–8.04)
Posttest probability (%) 84.0 86.8 90.4

AHI ≥ 15 events/h
Sensitivity 95.1 (93.9–96.2) 90.6 (89.0–92.0) 76.2 (74.4–78.0)
Specificity 26.5 (25.0–27.8) 42.1 (40.2–43.8) 63.0 (60.7–65.2)
PPV 61.4 (60.6–62.1) 65.8 (64.7–66.8) 71.7 (70.0–73.4)
NPV 81.5 (76.8–85.5) 78.4 (74.8–81.6) 68.3 (65.8–70.7)
Accuracy 64.4 (63.0–65.5) 68.8 (67.1–70.4) 70.3 (68.3–72.3)
LR + 1.29 (1.25–1.33) 1.56 (1.48–1.63) 2.06 (1.89–2.24)
LR − 0.18 (0.13–0.24) 0.22 (0.18–0.27) 0.37 (0.33–0.42)
Odds ratio 7.01 (5.09–9.66) 6.97 (5.45–8.92) 5.46 (4.48–6.64)
Posttest probability (%) 61.4 65.8 71.7

AHI ≥ 30 events/h
Sensitivity 97.3 (95.8–98.3) 94.0 (92.1–95.5) 81.9 (79.3–84.4)
Specificity 20.8 (20.1–21.4) 33.6 (32.6–34.4) 53.6 (52.2–54.8)
PPV 39.3 (38.7–39.7) 42.7 (41.8–43.4) 48.1 (46.6–49.6)
NPV 93.6 (90.1–96.0) 91.4 (88.7–93.6) 84.9 (82.7–87.0)
Accuracy 47.2 (46.2–47.9) 54.4 (53.1–55.4) 63.3 (61.5–65.0)
LR + 1.22 (1.19–1.25) 1.41 (1.36–1.45) 1.76 (1.65–1.86)
LR − 0.13 (0.08–0.20) 0.17 (0.13–0.24) 0.33 (0.28–0.39)
Odds ratio 9.45 (5.76–15.67) 7.93 (5.63–11.22) 5.22 (4.16–6.54)
Posttest probability (%) 39.1 42.6 48.1

No-Apnea scoring system is a 2-item model: neck circumference is scored as follows: 37.0–39.9 cm (1 point), 40.0–42.9 cm (3 points), and ≥ 43.0 cm (6 
points), whereas age is scored as follows: 35–44 years (1 point), 45–54 years (2 points), ≥ 55 years (3 points); totaling a score of 0–9 points. Data are 
presented as estimates (95% confidence intervals) unless otherwise stated. AHI = apnea-hypopnea index, LR = likelihood ratio, NPV = negative predictive 
value, PPV = positive predictive value.
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DISCUSSION

Our findings show that, in a sleep-laboratory setting containing 
a sample of subjects referred for evaluation of suspected OSA, 
an extremely simple tool, No-Apnea, designed with only two 
numeric and objectively acquired variables (NC and age) ex-
hibits excellent and reproducible performance when screening 
for OSA at any level of severity. In both derivation and valida-
tion cohorts, the No-Apnea discrimination (a 2-item tool) did 
not significantly differ from that of STOP-BANG (an 8-item 
tool) and NoSAS (a 5-item tool). As expected, both cohorts 
presented a high prevalence of OSA, an anticipated finding 

Table 6—Comparing predictive performances of the No-Apnea, STOP-BANG, and NoSAS (derivation cohort: n = 2,037).
Screening Tools

No-Apnea STOP-BANG NoSAS
AHI ≥ 5 events/h (prevalence: 77.9%)

Sensitivity 84.7 (83.6–85.8) 88.8 (87.7–89.8) 71.6 (70.5–72.6)
Specificity 54.9 (51.0–58.6) 47.1 (43.4–50.7) 68.7 (64.7–72.4)
PPV 86.9 (85.8–88.0) 85.5 (84.5–86.5) 89.0 (87.6–90.3)
NPV 50.4 (46.9–53.9) 54.4 (50.1–58.5) 40.7 (38.3–42.9)
Accuracy 78.1 (76.4–79.8) 79.6 (78.0–81.2) 70.9 (69.2–72.6)
LR + 1.87 (1.70–2.07) 1.67 (1.55–1.82) 2.28 (1.99–2.63)
LR − 0.27 (0.24–0.32) 0.23 (0.20–0.28) 0.41 (0.37–0.45)
Odds ratio 6.73 (5.30–8.53) 7.05 (5.49–9.04) 5.52 (4.37–6.97)
AUC 0.784 (0.761–0.808) 0.777 (0.752–0.801) 0.775 (0.752–0.799)

AHI ≥ 15 events/h (prevalence: 55.2%)
Sensitivity 90.6 (89.0–92.0) 92.5 (91.1–93.8) 79.2 (77.3–80.9)
Specificity 42.1 (40.2–43.8) 33.5 (31.8–35.1) 57.6 (55.4–59.8)
PPV 65.8 (64.7–66.8) 63.1 (62.2–64.0) 69.7 (68.1–71.2)
NPV 78.4 (74.8–81.6) 78.5 (74.4–82.1) 69.2 (66.5–71.8)
Accuracy 68.8 (67.1–70.4) 66.1 (64.5–67.5) 69.5 (67.5–71.5)
LR + 1.56 (1.48–1.63) 1.39 (1.33–1.44) 1.86 (1.73–2.01)
LR − 0.22 (0.18–0.27) 0.22 (0.17–0.28) 0.36 (0.31–0.40)
Odds ratio 6.97 (5.45–8.92) 6.24 (4.76–8.17) 5.17 (4.23–6.31)
AUC 0.758 (0.737–0.779) 0.759 (0.738–0.779) 0.757 (0.736–0.778)

AHI ≥ 30 events/h (prevalence: 34.5%)
Sensitivity 94.0 (92.1–95.5) 95.7 (94.0–97.0) 85.3 (82.8–87.6)
Specificity 33.6 (32.6–34.4) 27.0 (26.1–27.6) 49.2 (47.9–50.4)
PPV 42.7 (41.8–43.4) 40.8 (40.1–41.3) 46.9 (45.5–48.2)
NPV 91.4 (88.7–93.6) 92.3 (89.2–94.6) 86.4 (84.1–88.5)
Accuracy 54.4 (53.1–55.4) 50.7 (49.5–51.5) 61.7 (59.9–63.2)
LR + 1.41 (1.36–1.45) 1.31 (1.27–1.34) 1.68 (1.58–1.76)
LR − 0.17 (0.13–0.24) 0.15 (0.10–0.22) 0.29 (0.24–0.35)
Odds ratio 7.93 (5.63–11.22) 8.27 (5.54–12.40) 5.63 (4.42–7.18)
AUC 0.754 (0.733–0.776) 0.763 (0.742–0.784) 0.751 (0.730–0.773)

Data are presented as estimates (95% confidence intervals) unless otherwise stated. No-Apnea scoring system is a 2-item model: NC is scored as follows: 
37.0–39.9 cm (1 point), 40.0–42.9 cm (3 points), and ≥ 43.0 cm (6 points), whereas age is scored as follows: 35–44 years (1 point), 45–54 years (2 
points), ≥ 55 years (3 points); totaling a score of 0–9 points (score ≥ 3 was considered as high-risk for presence of any OSA, moderate/severe OSA, and 
severe OSA). STOP-BANG questionnaire is an 8-item model (1 point for each positive answer): loud snoring, tiredness, observed apnea, hypertension, 
BMI > 35 kg/m2, age > 50 years, NC > 40 cm, and male sex; totaling a score of 0–8 points (score ≥ 3 was considered as high-risk for presence of any OSA, 
moderate/severe OSA, and severe OSA). NoSAS score is a 5-item model: NC > 40 cm (4 points), BMI 25.0–29.9 kg/m2 (3 points), BMI ≥ 30.0 kg/m2 (5 
points), snoring (2 points), age > 55 years (4 points), male sex (2 points); totaling a score of 0–17 points (score ≥ 8 was considered as high risk for presence 
of any OSA, moderate/severe OSA, and severe OSA). AHI = apnea-hypopnea index, AUC = area under the curve, BMI = body mass index, LR = likelihood 
ratio, NC = neck circumference, NPV = negative predictive value, OSA = obstructive sleep apnea, PPV = positive predictive value.

because these were clinically referred sleep-laboratory pa-
tients, a population known to have a high prevalence of OSA. 
According to previous studies,8,10,23–25 our findings showed that 
males had higher NC than females, whereas females were older 
when compared with males. Similarly, we also observed that 
men had a higher rate of OSA compared to women.3–5,8,10,23–25

The cutoff used to classify patients with high pretest prob-
ability of OSA was 3 points for OSA-5, OSA-15, and OSA-30. 
The inclusion of this single cutoff was chosen to obtain a high 
sensitivity with consequent moderate specificity. Sensitivity 
and specificity of a screening model are usually inversely re-
lated, and the high sensitivity often comes at the expense of 
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Table 7—Comparing predictive performances of the No-Apnea, STOP-BANG, and NoSAS (validation cohort: n = 2,035).
Screening Tools

No-Apnea STOP-BANG NoSAS
AHI ≥ 5 events/h (prevalence: 76.4%)

Sensitivity 83.1 (81.9–84.2) 88.9 (87.8–89.9) 71.3 (70.1–72.4)
Specificity 58.2 (54.5–61.8) 51.4 (47.8–54.7) 71.7 (68.0–75.2)
PPV 86.5 (85.3–87.7) 85.5 (84.5–86.5) 89.1 (87.6–90.4)
NPV 51.6 (48.3–54.7) 58.8 (54.8–62.7) 43.6 (41.3–45.7)
Accuracy 77.2 (75.4–78.9) 80.0 (78.3–81.6) 71.4 (69.6–73.1)
LR + 1.98 (1.80–2.20) 1.82 (1.68–1.98) 2.52 (2.19–2.92)
LR − 0.29 (0.25–0.33) 0.21 (0.18–0.25) 0.40 (0.36–0.43)
Odds ratio 6.83 (5.42–8.61) 8.42 (6.59–10.77) 6.30 (4.99–7.96)
AUC 0.781 (0.757–0.805) 0.803 (0.781–0.825) 0.780 (0.757–0.803)

AHI ≥ 15 events/h (prevalence: 54.7%)
Sensitivity 88.7 (87.1–90.2) 93.4 (92.0–94.6) 78.3 (76.4–80.1)
Specificity 45.3 (43.3–47.1) 37.6 (35.9–39.1) 59.6 (57.4–61.8)
PPV 66.2 (65.0–67.3) 64.4 (63.4–65.2) 70.1 (68.4–71.7)
NPV 76.8 (73.5–79.9) 82.4 (78.7–85.6) 69.4 (66.8–71.9)
Accuracy 69.0 (67.3–70.7) 68.1 (66.6–69.5) 69.8 (67.8–71.8)
LR + 1.62 (1.53–1.70) 1.49 (1.43–1.55) 1.93 (1.79–2.09)
LR − 0.25 (0.20–0.29) 0.17 (0.13–0.22) 0.36 (0.32–0.41)
Odds ratio 6.48 (5.14–8.19) 8.45 (6.39–11.19) 5.31 (4.36–6.48)
AUC 0.752 (0.731–0.773) 0.777 (0.760–0.801) 0.756 (0.735–0.777)

AHI ≥ 30 events/h (prevalence: 35.8%)
Sensitivity 91.5 (89.4–93.3) 97.1 (95.6–98.1) 84.5 (82.0–86.7)
Specificity 36.8 (35.6–37.8) 30.5 (29.7–31.1) 51.9 (50.5–53.1)
PPV 44.6 (43.6–45.5) 43.8 (43.1–44.2) 49.4 (48.0–50.8)
NPV 88.6 (85.8–91.0) 95.0 (92.4–96.8) 85.7 (83.4–87.8)
Accuracy 56.4 (54.9–57.6) 54.3 (53.3–55.1) 63.5 (61.8–65.2)
LR + 1.44 (1.38–1.49) 1.39 (1.36–1.42) 1.75 (1.65–1.85)
LR − 0.23 (0.17–0.29) 0.09 (0.06–0.14) 0.29 (0.24–0.35)
Odds ratio 6.25 (4.67–8.39) 14.79 (9.26–23.84) 5.86 (4.64–7.41)
AUC 0.752 (0.730–0.773) 0.778 (0.761–0.803) 0.752 (0.731–0.774)

Data are presented as estimates (95% confidence intervals) unless otherwise stated. No-Apnea scoring system is a 2-item model: NC is scored as follows: 
37.0–39.9 cm (1 point), 40.0–42.9 cm (3 points), and ≥ 43.0 cm (6 points); whereas age is scored as follows: 35–44 years (1 point), 45–54 years (2 
points), ≥ 55 years (3 points); totaling a score of 0–9 points (score ≥ 3 was considered as high-risk for presence of any OSA, moderate/severe OSA, and 
severe OSA). STOP-BANG questionnaire is an 8-item model (1 point for each positive answer): loud snoring, tiredness, observed apnea, hypertension, 
BMI > 35 kg/m2, age > 50 years, NC > 40 cm, and male sex; totaling a score of 0–8 points (score ≥ 3 was considered as high-risk for presence of any OSA, 
moderate/severe OSA, and severe OSA). NoSAS score is a 5-item model: NC > 40 cm (4 points), BMI 25.0–29.9 kg/m2 (3 points), BMI ≥ 30.0 kg/m2 (5 
points), snoring (2 points), age > 55 years (4 points), male sex (2 points); totaling a score of 0–17 points (score ≥ 8 was considered as high risk for presence 
of any OSA, moderate/severe OSA, and severe OSA). AHI = apnea-hypopnea index, AUC = area under the curve, BMI = body mass index, LR = likelihood 
ratio, NC = neck circumference, NPV = negative predictive value, OSA = obstructive sleep apnea, PPV = positive predictive value.

specificity. For a disease such as OSA, it is possibly more im-
portant that a screening test has a high sensitivity, and does not 
miss patients with OSA, rather than a high specificity, espe-
cially in a population with high pretest probability of disease.10 
However, this strategy may not be unanimous. A previous 
study26 reports on the strategy of using different cutoffs to rule-
in or rule-out OSA. In a sleep-laboratory setting, where the 
main objective is to identify subjects with more severe forms 
of OSA and requiring treatment with continuous positive air-
way pressure (CPAP), a higher cutoff for a given model may 
be preferred, whereas in a primary care setting where the pri-
ority is not to miss any disease, a lower cutoff may be more 

appropriate.26 Similar to prior studies on STOP-BANG,27–29 as 
the No-Apnea score increased, the posttest probability of hav-
ing OSA-5, OSA-15, and OSA-30 also increased.

OSA is a very prevalent and often underdiagnosed dis-
ease.30,31 In addition, symptoms suggestive of OSA, despite 
being common, are not consistently investigated during rou-
tine clinical visits.32 Accordingly, screening tools can be used 
to identify patients at high risk for SDB, thus prioritizing the 
use of portable methods in areas with limited resources. How-
ever, the performance of an OSA questionnaire may have con-
siderable variability according to the patient population and 
AHI thresholds employed.10,33 The Berlin questionnaire, for 
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example, possibly has a better performance in primary care 
settings than sleep laboratory settings.26,34 In a sleep clinic 
population, the STOP-BANG showed sensitivity of 90%, 94%, 
and 96% to detect OSA-5, OSA-15, and OSA-30, respectively; 
however, specificity was relatively low (49%, 34%, and 25%; 
respectively).35 Conversely, STOP-BANG alone was insuffi-
cient to confirm the occurrence of significant OSA in military 
veterans undergoing unattended sleep studies, mainly OSA-15, 
in whom a score of 3 showed a high sensitivity (99.1%), but also 
a very low specificity (4.9%).36

The STOP-BANG is an instrument with high sensitivity that 
increases in parallel with increasing AHI thresholds (from 5 to 
30 events/h).13 Conversely, it exhibits moderate to low specific-
ity based on the AHI thresholds used herein, such that decreases 
in specificity result in a large number of false-positive results, 
thereby reducing accuracy, especially in the more severe forms 
of OSA. This issue is critical, particularly in sleep laboratories 
targeting the choice of portable diagnostic methods or when 
predicting which subjects will be requiring CPAP treatment.

The abilities of the 4-Variable screening tool, STOP, STOP-
BANG, and ESS questionnaires in identifying subjects at risk 
for SDB were previously evaluated37: for predicting OSA-15, the 
STOP-BANG had the highest sensitivity (87.0%) with an AUC 
of 0.64, whereas the 4-Variable screening tool had the highest 
specificity (93.2%) and accuracy (79.4%). Moreover, predictive 

parameters for OSA-30 showed that the STOP-BANG had the 
highest sensitivity (70.4%), whereas the 4-Variable screening 
tool had the highest specificity (93.2%) and accuracy (86.7%) 
with an AUC of 0.67. Similar findings are shown in a study38 

comparing five different questionnaires (STOP, STOP-BANG, 
Berlin, ESS, and 4-Variable screening tool): the STOP-BANG 
had the highest sensitivity (97.6%) and the largest AUC (0.73), 
but the lowest specificity (12.7%) for OSA-15. Conversely, the 
4-Variable screening tool had the highest specificity (74.4%) 
followed by ESS (67.0%).

According to NoSAS, although this instrument may pos-
sibly present good performances when other AHI thresholds 
are explored, it was implemented using an AHI cutoff of 20 
events/h.16 Conversely, our model was tested at three differ-
ent AHI thresholds that are widely recognized and accepted 
when assessing the severity of OSA. The NoSAS score16 has 
five variables (NC, BMI, age, sex, and snoring), whereas our 
tool requires only two objective parameters, a feature that we 
think can translate into greater practical applicability and ease 
of implementation. Moreover, NoSAS approach uses the pres-
ence of snoring as an integral parameter, thus requiring infor-
mation based on a bed partner, thereby potentially resulting in 
information bias.

A recent study39 was developed to validate the NoSAS score 
in a multiethnic Asian cohort and compare its performance 

Figure 1—Receiver operating characteristic curves showing the discrimination of No-Apnea, STOP-BANG, and NoSAS.

Values shown as area under the curve and 95% confidence interval. Top panels: derivation cohort (n = 2,037). Bottom panels: validation cohort (n = 2,035). 
OSA severity was classified based on AHI as follows: ≥ 5 events/h as any OSA, ≥ 15 events/h as moderate/severe OSA, and ≥ 30 events/h as severe OSA. 
AHI = apnea-hypopnea index, OSA = obstructive sleep apnea.



1106Journal of Clinical Sleep Medicine, Vol. 14, No. 7 July 15, 2018

RL Duarte, MF Rabahi, FJ Magalhães-da-Silveira, et al. A 2-Item Model for the Screening of OSA

with STOP-BANG and Berlin questionnaires: both question-
naires performed in a manner similar to that of the NoSAS 
score, with AUCs of all of them clustered around 0.682–0.748. 
Our study also did not verify performance differences between 
STOP-BANG and NoSAS, therefore different from the previ-
ous study of derivation and validation of NoSAS, in which it 
performed better than the STOP-BANG (P < .0001) and Ber-
lin questionnaires (P < .0001) in both cohorts (HypnoLaus and 
EPISONO).16

Strengths and Limitations
Our study had some limitations: patient selection for genera-
tion of the tool was predicated on sleep laboratory subjects, and 
therefore the possibility of selection bias is plausible and its 
implication for the general population may be limited. In gen-
eral, patients referred to a sleep laboratory are often suspected 
of having OSA and they reflect selected patients with a high 
pretest probability. Furthermore, possible specific differences 
in the tool properties among sexes may require future optimiz-
ing adjustments. A finding that deserves to be emphasized is 
that our 2-item model uses a parameter (NC) that can suffer 
from measurement error, which can cause information bias. In 
addition, it can be influenced by populations with their own 
anthropometric characteristics (Asian or African populations), 
thus requiring further validation in these settings. Similarly, 
measures of regional obesity were not included, and might pro-
vide important additional information to the referral decision-
making algorithm.

Conversely, we should also point out several features of 
the current study that should strengthen the ability to imple-
ment the proposed instrument. First, the tool is a mnemonic 
and concise model with only two numerical and readily mea-
sured objective variables along with absence of any subjec-
tively reported items, thereby allowing for easier acquisition 
and calculation while reducing potential biases. Second, it was 
developed and then validated in two large and independent co-
horts, with all individuals enrolled undergoing full PSG and 
with the same diagnostic criteria,19 aiming to explore the ro-
bustness of our model. Third, the developed scoring system 
presented adequate performance (overall performance, dis-
crimination, and calibration) in the derivation cohort as well as 
in a validation cohort.

CONCLUSIONS

In conclusion, our tool shows favorable promise for screen-
ing of OSA at any level of severity, based on commonly and 
widely used AHI thresholds. This tool should enable alloca-
tion of patients to different severity types and corresponding 
priorities, and thus enable improved patient prioritization and 
resource allocation. In addition, there was no superiority of 
one model over the other, which highlights a very great practi-
cal applicability of the No-Apnea because it contains only two 
objective variables easily obtained during the evaluation of a 
patient with suspected OSA. Therefore, it can also be used in 
individuals who sleep alone, in whom subjective information 
about sleep is not necessarily available. As with any population 

study, future prospective exploration for other world regions 
and different clinical settings will be critical for widespread 
implementation of such simple tool.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
AUC, area under the curve
BMI, body mass index
CI, confidence interval
CPAP, continuous positive airway pressure
ESS, Epworth Sleepiness Scale
IQR, interquartile range
NC, neck circumference
NPV, negative predictive value
OR, odds ratio
OSA, obstructive sleep apnea
PPV, positive predictive value
PSG, polysomnography
ROC, receiver operating characteristic
SDB, sleep-disordered breathing
SpO2, oxygen saturation
VIF, variance inflation factor
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